重庆工业合成甘油价格多少_重庆工业合成甘油价格多少钱一吨
1.有微污染水源处理技术的详细资料吗
2.为什么说“中国科学家邹承鲁最早合成胰岛素,但是由于中国大陆的政治体制,没能获得诺贝尔奖”
3.制动液有什么要求
4.重庆鬼屋哪个好玩重庆鬼屋推荐
新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料,但采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车包括有:混合动力汽车(HEV)、纯电动汽车(BEV)、燃料电池汽车(FCEV)、氢发动机汽车以及燃气汽车、醇醚汽车等等。 混合动力是指那些采用传统燃料的,同时配以电动机/发动机来改善低速动力输出和燃油消耗的车型。按照燃料种类的不同,主要又可以分为汽油混合动力和柴油混合动力两种。国内市场上,混合动力车辆的主流都是汽油混合动力,而国际市场上柴油混合动力车型发展也很快。
优点:
1、采用混合动力后可按平均需用的功率来确定内燃机的最大功率,此时处于油耗低、污染少的最优工况下工作。需要大功率内燃机功率不足时,由电池来补充;负荷少时,富余的功率可发电给电池充电,由于内燃机可持续工作,电池又可以不断得到充电,故其行程和普通汽车一样。
2、因为有了电池, 可以十分方便地回收制动时、下坡时、怠速时的能量。
3、在繁华市区,可关停内燃机,由电池单独驱动,实现“零”排放。
4、有了内燃机可以十分方便地解决耗能大的空调、取暖、除霜等纯电动汽车遇到的难题。
5、可以利用现有的加油站加油,不必再投资。
6、可让电池保持在良好的工作状态,不发生过充、过放,延长其使用寿命,降低成本。
缺点:长距离高速行驶基本不能省油。 电动汽车顾名思义就是主要采用电力驱动的汽车,大部分车辆直接采用电机驱动,有一部分车辆把电动机装在发动机舱内,也有一部分直接以车轮作为四台电动机的转子,其难点在于电力储存技术。本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少,由于电厂大多建于远离人口密集的城市,对人类伤害较少,而且电厂是固定不动的,集中的排放,清除各种有害排放物较容易,也已有了相关技术。由于电力可以从多种一次能源获得,如煤、核能、水力、风力、光、热等,解除人们对石油资源日见枯竭的担心。电动汽车还可以充分利用晚间用电低谷时富余的电力充电,使发电设备日夜都能充分利用,大大提高其经济效益。有关研究表明,同样的原油经过粗炼,送至电厂发电,经充入电池,再由电池驱动汽车,其能量利用效率比经过精炼变为汽油,再经汽油机驱动汽车高,因此有利于节约能源和减少二氧化碳的排量,正是这些优点,使电动汽车的研究和应用成为汽车工业的一个“热点”。有专家认为,对于电动车而言,目前最大的障碍就是基础设施建设以及价格影响了产业化的进程,与混合动力相比,电动车更需要基础设施的配套,而这不是一家企业能解决的,需要各企业联合起来与当地政府部门一起建设,才会有大规模推广的机会。
优点:技术相对简单成熟,只要有电力供应的地方都能够充电。
缺点: 蓄电池单位重量储存的能量太少,还因电动车的电池较贵,又没形成经济规模,故购买价格较贵,至于使用成本,有些试用结果比汽车贵,有些结果仅为汽车的1/3,这主要取决于电池的寿命及当地的油、电价格。 燃料电池汽车是指以氢气、甲醇等为燃料,通过化学反应产生电流,依靠电机驱动的汽车。其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能或的。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。
单个的燃料电池必须结合成燃料电池组,以便获得必需的动力,满足车辆使用的要求。
近几年来,燃料电池技术已经取得了重大的进展。世界著名汽车制造厂,如戴姆勒-克莱斯勒、福特、丰田和通用汽车公司已经宣布,计划在2004年以前将燃料电池汽车投向市场。燃料电池轿车的样车正在进行试验,以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。在开发燃料电池汽车中仍然存在着技术性挑战,如燃料电池组的一体化,提高商业化电动汽车燃料处理器和辅助部汽车制造厂都在朝着集成部件和减少部件成本的方向努力,并已取得了显著的进步。
与传统汽车相比,燃料电池汽车具有以下优点:
1、零排放或近似零排放。
2、减少了机油泄露带来的水污染。
3、降低了温室气体的排放。
4、提高了燃油经济性。
5、提高了发动机燃烧效率。
6、运行平稳、无噪声。 氢动力汽车是一种真正实现零排放的交通工具,排放出的是纯净水,其具有无污染,零排放,储量丰富等优势,因此,氢动力汽车是传统汽车最理想的替代方案。与传统动力汽车相比,氢动力汽车成本至少高出20%。中国长安汽车在2007年完成了中国第一台高效零排放氢内燃机点火,并在2008年北京车展上展出了自主研发的中国首款氢动力概念跑车“氢程”。
随着“汽车社会”的逐渐形成,汽车保有量在不断地呈现上升趋势,而石油等资源却捉襟见肘,另一方面,吞下大量汽油的车辆不断排放着有害气体和污染物质。最终的解决之道当然不是限制汽车工业发展,而是开放替代石油的新能源,燃料电池车的四轮快速又安静地滚过路面,辙印出新能源的名字——氢。
几乎所有的世界汽车巨头都在研制新能源汽车。电曾经被认为是汽车的未来动力,但蓄电池漫长的充电时间和重量使得人们渐渐对它兴味索然。而2009年的电与汽油合用的混合动力车只能暂时性地缓解能源危机,只能减少但无法摆脱对石油的依赖。这个时候,氢动力燃料电池的出现,犹如再造了一艘诺亚方舟,让人们从危机中看到无限希望。
以氢气为汽车燃料这种说法刚出来时吓人一跳,但事实上是有根据的。氢具有很高的能量密度,释放的能量足以使汽车发动机运转,而且氢与氧气在燃料电池中发生化学反应只生成水,没有污染。因此,许多科学家预言,以氢为能源的燃料电池是21世纪汽车的核心技术,它对汽车工业的革命性意义,相当于微处理器对计算机业那样重要
优点:排放物是纯水,行驶时不产生任何污染物。
缺点:氢燃料电池成本过高,而且氢燃料的存储和运输的技术条件非常困难,因为氢分子非常小,极易透过储藏装置的外壳逃逸。另外最致命的问题,氢气的提取需要通过电解水或者利用天然气,如此一来同样需要消耗大量能源,除非使用核电来提取,否则无法从根本上降低二氧化碳排放。 燃气汽车是指用压缩天然气(CNG)、液化石油气(LPG)和液化天然气(LNG)作为燃料的汽车。世界上各国政府都积极寻求解决这一难题,开始纷纷调整汽车燃料结构。燃气汽车由于其排放性能好,可调正汽车燃料结构,运行成本低、技术成熟、安全可靠,所以被世界各国公认为当前最理想的替代燃料汽车。
燃气仍然是世界汽车代用燃料的主流,在我国代用燃料汽车中占到90%左右。美国的目标是,到2010年,公共汽车领域有7%的汽车使用天然气,50%的出租车和班车改为专用天然气的汽车;到2010年,德国天然气汽车数量将达到10万至40万辆,加气站将由180座增加到300座。
业内专家指出,替代燃料的作用是减轻并最终消除由于石油供应紧张带来的各种压力以及对经济发展产生的负面影响。中国仍将主要用压缩天然气、液化气、乙醇汽油作汽车的替代燃料。汽车代用燃料能否扩大应用,取决于中国替代燃料的资源、分布、可利用情况,替代燃料生产与应用技术的成熟程度以及减少对环境污染等;替代燃料的生产规模、投资、生产成本、价格决定着其与石油燃料的竞争力;汽车生产结构与设计改进必须与燃料相适应。
以燃气替代燃油将是中国乃至世界汽车发展的必然趋势。我国应尽快组织力量,制定出国家级燃气汽车政策。考虑到我国能源安全主要是石油的状况,发展包括燃气汽车在内的各种代用燃料汽车,已是刻不容缓的事,根据国情应该做到:
一是要限制燃气价格,使油、气价格之间保持合理的差价,如四川省、重庆市的油、气差价,即可保证燃气汽车适度发展;
二是鉴于加气站投资大,回收期长,政府适当给予一定补贴,在加气站售出的气价和汽车用户因用气节省的燃料费用之间,调节好利益分配;
三是对加气站的所得税,应参照高新技术产业开发区政策,采取免二减三的税收政策;
四是将加气站用电按照特殊工业用电对待,电价从优;另外,对加气站用地,能按重大项目和环保产业对待,特事特办,不要互相推诿、扯皮,积极采用国外先进建站标准,科学确定消防安全距离,节省土地资源。 乙醇俗称酒精,通俗些说,使用乙醇为燃料的汽车,也可叫酒精汽车。用乙醇代替石油燃料的活动历史已经很长,无论是从生产上和应用上的技术都已经很成熟,由于石油资源紧张,汽车能源多元化趋向加剧,乙醇汽车又提到议事日程。
世界上已有40多个国家,不同程度应用乙醇汽车,有的已达到较大规模的推广,乙醇汽车的地位日益提升。
在汽车上使用乙醇,可以提高燃料的辛烷值,增加氧含量,使汽车缸内燃烧更完全,可以降低尾气的害物的排放。
乙醇汽车的燃料应用方式:
一、掺烧,指乙醇和汽油掺合应用。在混合燃料中,乙醇和容积比例以“E”表示,如乙醇占10%,15%,则用E10,E15来表示,掺烧占乙醇汽车占主要地位。
二、纯烧,即单烧乙醇,可用E100%表示,应用并不多,属于试行阶段;
三、变性燃料乙醇,指乙醇脱水后,再添加变性剂而生成的乙醇,这也是属于试验应用阶步;
四、灵活燃料,指燃料既可用汽油,又可以使用乙醇或甲醇与汽油比例混合的燃料,还可以用氢气,并随时可以切换。如福特,丰田汽车均在试验灵活燃料汽车。 发展
柴油作为一种重要的石油连炼制产品,在各国燃料结构中占有较高的份额,以成为重要的动力燃料。随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量会愈来愈大,而石油资源的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是进入了20世纪90年代,生物柴油以其优越的环保性能受到了各国的重视。生物柴油
生物柴油(Biodiesel)是指以油料作物、野生油料植物和工程微藻等水生植物油脂以及动物油脂、餐饮垃圾油等为原料油通过酯交换工艺制成的可代替石化柴油的再生性柴油燃料。生物柴油是生物质能的一种,它是生物质利用热裂解等技术得到的一种长链脂肪酸的单烷基酯。生物柴油是含氧量极高的复杂有机成分的混合物,这些混合物主要是一些分子量大的有机物,几乎包括所有种类的含氧有机物,如:醚、酯、醛、酮、酚、有机酸、醇等。
主要特性
炼油企业为了向市场提供清洁油品使燃烧柴油尾气排放达到标准要求,需要采取以下三种措施:一是要有性能优异的深度加氢脱硫催化剂,以脱除难以加氢脱硫的4,6-二甲基苯并噻吩等芳香基硫化合物;二是要有抗硫的贵金属芳烃饱和催化剂,能使芳烃加氢饱和在较低压力下进行,以节省投资;三是要有提高十六烷值的工艺。而生物柴油以其优异的环保性能可很容易达到世界燃油规范的柴油Ⅱ、Ⅲ类标准要求。
众所周知,柴油分子是由15个左右的碳链组成的,研究发现植物油分子则一般又14~18个碳链组成,与柴油分子中碳数相近。因此生物柴油就是一种用油彩籽等可再生植物油加工制取的新型燃料。按化学成分分析,生物柴油燃料是一种高脂酸甲烷,它是通过以不饱和油酸C18 为主要成分的甘油脂分解而获得的[1]。与常规柴油相比,生物柴油下述具有无法比拟的性能。
(1) 具有优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。
(2) 具有较好的低温发动机启动性能。无添加剂冷滤点达-20℃。
(3) 具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。
(4) 具有较好的安全性能。由于闪点高,生物柴油不属于危险品。因此,在运输、储存、使用方面的有是显而易见的。
(5) 具有良好的燃料性能。十六烷值高,使其燃烧性好于柴油,燃烧残留物呈微酸性使催化剂和发动机机油的使用寿命加长。
(6) 具有可再生性能。作为可再生能源,与石油储量不同其通过农业和生物科学家的努力,可供应量不会枯竭。
生物柴油的优良性能使得采用生物柴油的发动机废气排放指标不仅满足欧洲Ⅱ号标准,甚至满足随后即将在欧洲颁布实施的更加严格的欧洲Ⅲ号排放标准。而且由于生物柴油燃烧时排放的二氧化碳远低于该植物生长过程中所吸收的二氧化碳,从而改善由于二氧化碳的排放而导致的全球变暖这一有害于人类的重大环境问题。因而生物柴油是一种真正的绿色柴油。
发展趋势
现代柴油机促使汽车车型柴油化的趋势加快
在欧洲,1999年新购柴油轿车比例约为30%,法国甚至达到48%。2000年,欧洲市场上柴油轿车的销售量达到440万辆,比1995年翻了一倍。3013年经济型轿车主要生产厂商如大众、雷诺、欧宝和福特的顾客中,几乎有一半需要柴油车。2013年,在欧洲轿车市场上,新型柴油轿车购买率达30%,专家预言:到2006年,欧洲每2辆新车中就有1辆是柴油车。在美国市场上,商用车(即我国所称的卡车、客车)的90%为柴油车;在日本,将近10%的轿车是柴油轿车,38%的商用车为柴油车。美国、日本及欧洲的重型汽车全部使用柴油机为动力。许多国家在税收、燃料供应等方面予以政策上的倾斜,敦促柴油发动机的普及和发展。 我国柴油汽车生产比例已由1990年的15%上升到1998年的26%。1997年我国生产的重型载货汽车和大型客车全部采用柴油发动机;65.9%中型载货汽车采用柴油发动机,53.5%中型客车采用柴油发动机;55.4%和29.4%的轻型载货汽车、轻型客车也开始采用柴油发动机。我国1994年颁布的《汽车工业产业政策》明确提出,总重量超过5 t的载客汽车载货汽车在2000年后主要采用柴油为燃料。在未来的几年,是中国汽车工业腾飞的时代。因此,我国柴油车产量的增长趋势还将继续下去,汽车柴油化是中国汽车工业的一个发展方向。
汽车车型柴油化趋势的加快主要是由于现代柴油机采用了电控发动机控制系统、高压燃油直喷式燃烧系统以及废气排放控制装置,已完全克服了传统柴油机的缺点,能够满足现行的国际排放标准,而这些装置和技术要求柴油含硫量低,有良好的安定性及润滑性,较高的十六烷值和清净性等。随着现代柴油机使用生物柴油燃料技术的成熟,2013年在世界范围内出现的这种汽车车型柴油化趋势会进一步加快。据专家预测,在2010年以前,是柴油需求年均增长3.3%,到2010年,世界柴油的需求量将从2013年目前的38%增加到45%。而世界范围内柴油的供应量严重不足,给生物柴油留下广阔的发展空间。 很多年前,已经有科学家预言——世界上终有这么一天,用水就可以驱动汽车。今天,虽然这一步还未达到,但以水中的氢气作为动力来源的科技却已经变为现实,来自日本的“丰田”汽车,就成功研制出一辆通过氢和氧化学反应而进行发电的新一代电动汽车,取名为FCEV。
FCEV,英文Fuel Eiectric Vehicle的缩写,中文名称正确应该是甲醇型燃料电池电动汽车。顾名思义,FCEV的主要燃料就是甲醇(即我们俗称的酒精)。在汽车上,仍旧保留油缸,但注入的不是汽油,则是甲醇,在引擎室内,则安装了由蒸发部、调整部及减少一氧化碳等三个部分组成的甲醇调整器,当燃料泵将甲醇(CH3OH)和水(HO2)的混合液体从油缸送至调整器时,在蒸发部加热会变为蒸汽,再在调整部经催化剂作用下,就成氢(H2)和二氧化碳(CO2)气体,此时,微量的有害一氧化碳(CO)气体会经过减少一氧化碳部被消减,最后,只剩下氢气及二氧化碳会被送到燃料电池的氢极,经过化学反应而成为电能,就这样,甲醇就可不断通过调整器而变成电能,从而驱动汽车行驶。
这种甲醇动力汽车的优点,不用说当然是达到环保目的,经反复测试显示,它的士气二氧化碳排放量只及变通汽车的二分之一以下,至于一氧化碳、碳氢化合物、氮氧化合物等有害物质的排放量虽然还未至于零的地步,但已经达到非常低的指数;再者,甲醇成本比汽油要低得多,加满一次即可连续行车四、五百公里,而且最难得的是,FCEV无须将油缸改装去迁就,只要将现时的油缸改存甲醇就能够成事,简单经济,具有很大的发展潜力。
有微污染水源处理技术的详细资料吗
前绪——行情回顾
2019年末纯碱期货上市,在2021年走出了波澜壮阔的行情。具体来看,2019年国内纯碱市场呈下行态势,纯碱厂家利润明显萎缩,四季度传统生产旺季,检修厂家减少,纯碱产量明显增加。但轻碱下游需求疲软,加之放水冷修浮法线增多,纯碱市场开启深跌模式。2020年上半年市场下行为主,春节后碱厂的复工复产进程明显快于下游用户,同时海外疫情爆发,出口订单大幅萎缩,供需矛盾凸显,纯碱厂家库存持续攀升,市场价格快速下移,6月份纯碱价格创十年新低,纯碱行业普遍亏损。三季度减量检修企业增加,下游浮法、光伏玻璃产能扩张,造成短期供需错配。2021年纯碱市场价格上涨为主。纯碱新增产能有限,部分产能淘汰,总产能同比减少,浮法及光伏玻璃产能扩张,对重碱用量增加,价格持续上涨。7-8月检修高峰,货紧价扬,涨幅有所扩大。9月双控叠加检修,货源供应减量,厂家惜售封单,价格明显上调。10月煤炭带动下,限电品种悉数回落,纯碱不断累库。2022年初受到稳增长预期影响,纯碱整体供给压力不大,叠加玻璃补库需求带来纯碱的一波上涨。
一、纯碱简介
纯碱概念
纯碱,又名苏打,主要成分为碳酸钠(Na2CO3)。碳酸钠常温下为白色无气味的粉末或颗粒,有吸水性,露置在空气中逐渐吸收水分形成结块。碳酸钠易溶于水和甘油,每100克水中可溶解49.7克碳酸钠。碳酸钠属于钠盐,水溶液呈碱性(pH=11.6),有一定的腐蚀性,高温下可分解生成氧化钠和二氧化碳。长期暴露在空气中会吸收水分及二氧化碳,生成碳酸氢钠(小苏打NaHCO3)。碳酸钠可分别与酸、盐、碱发生化学反应:与酸反应生成氯化钠和碳酸,不稳定的碳酸立刻分解成二氧化碳和水;与钙盐、钡盐反应可生成沉淀和新的钠盐;与氢氧化钙、氢氧化钡等碱反应生成沉淀和氢氧化钠,工业上会用这种反应制备烧碱(氢氧化钠),俗称苛化法。
根据密度的不同,纯碱主要分为轻质纯碱(简称轻碱)和重质纯碱(简称重碱),主要是物理形态不同:轻碱密度为500-600kg/m3,呈白色结晶粉末状;重碱密度为1000-1200kg/m3,呈白色细小颗粒状。与轻碱相比,重碱具有坚实、颗粒大、密度高、吸湿低、不易结块、不易飞扬、流动性好等特点。根据用途不同,纯碱可分为工业纯碱和食用纯碱。根据氯化物含量的不同,纯碱可分为普通碱、低盐碱、超低盐碱、特殊低盐碱。普通碱氯化钠的质量分数≤1.20%;低盐碱氯化钠的质量分数≤0.90%;超低盐碱氯化钠的质量分数≤0.70%;特殊低盐碱氯化钠的质量分数≤0.30%。
二、纯碱工艺与成本
纯碱生产工艺介绍
纯碱的生产工艺主要有联碱法、氨碱法、天然碱法和ADC发泡剂联产法,2020年四种生产工艺产能占比分别为48.8%、45.2%、5.1%和0.9%,其主要产成品是轻碱和重碱,轻碱通过水合法或挤压法可得到重碱。
资料来源:公开数据整理,美尔雅期货
天然碱法的原料主要是天然碱矿,生产工艺简单,成本低。目前全世界发现天然碱矿的只有美国、中国、土耳其、墨西哥等少数国家,其中美国、土耳其和中国是主要的天然碱法生产国。我国天然碱法生产主要集中在河南和内蒙古。
氨碱法原料主要是原盐和石灰石,通过氨盐水吸收二氧化碳得到碳酸氢钠(小苏打),再将碳酸氢钠煅烧,得到轻碱,转化之后得到重碱。氨碱法主要优点是产品质量高、可以生产低盐碱、适合大规模连续生产、副产品氨循环利用,缺点在于产品单一、原盐利用率低、废液废渣污染环境等。
联碱法也称侯氏制碱法,在氨碱法工艺基础上改进而来,其上游主要是原盐与合成氨,通过与氨厂进行“一次加盐、两次吸氨、一次碳化”联合循环生产,利用氨厂NH3和CO2同时生产出纯碱和氯化铵两种产品。联碱法克服了氨碱法的缺点,原盐利用率大幅提升,无需石灰石和焦炭(煤),节约了燃料、原料、能源和运输费用,同时避免了大量废渣和废液的排放,其副产品氯化铵还可用于氮素化学肥料、电池制造、电镀和印染等。
纯碱的生产成本
国内纯碱企业主要包含以下六项成本费用:
(1)原料及主要材料费用:原盐和石灰石作为原料,二氧化碳和合成氨作为辅助材料。
(2)燃料及动力费用:包括电、蒸汽、重油、天然气、动力煤等费用。
(3)工资及福利费:纯碱生产管理等人员的工资以及福利费用。
(4)车间经费:指车间正常生产耗用的各种材料费用,包含了固定资产的折旧费、修理费以及其他杂费。
(5)联、副产品扣除费:纯碱生产过程中需要扣除的所产联产品、副产品费用。
(6)企业管理费:指企业为管理和组织全厂生产所发生的各项费用。
氨碱法生产成本:目前我国氨碱法每吨纯碱的生产成本一般在1250-1800元。其中原材料(原盐和石灰石)采购成本约占总成本的40-50%,煤炭占总成本的30-35%,制造成本合计在90%以上,其余费用占比不到10%。
联碱法生产成本:联碱法产出纯碱的同时以1:1.0-1.2的比例产出氯化铵。通常以纯碱产量为基础,先算出联碱法“双吨”总成本,再按比例扣除氯化铵费用,得出纯碱成本。目前我国联碱法“双吨”成本在2100-2500元,纯碱成本占双吨成本的75%-80%,因此联碱法生产纯碱的成本一般在1500-2000元/吨。
天然碱法生产成本:我国天然碱法每吨纯碱生产成本在1300-1400元。成本包含二氧化碳、煤炭、天然碱矿采矿费用、矿产资源补偿费、生产添加催化剂、人工成本、设备损耗、环保设施等一系列固定成本。
三、纯碱供给
纯碱产能与产量
全球纯碱产能主要集中在东北亚、北美及欧洲区域,其中中国是全球最大的纯碱生产国,产能占到全球纯碱总产能的40%左右。美国、土耳其的纯碱生产以天然碱法为主,成本优势明显,而国内天然碱占比仅有5%左右。国内的纯碱产能主要分布在华北、华中和华东地区。其中江苏、河南、青海、山东、河北是中国主要的纯碱生产省份,其中江苏占比17.5%、河南占比16%、青海占比15.1%。
我国纯碱工业始于1917年天津永利碱厂的创办,1953年开始实行“五年计划”之后,我国纯碱产能与产量持续发展,生产工艺从联碱为主,到联碱法、氨碱法、天然碱法并重。90年代初,我国结束了长期依靠进口的局面,逐步成为纯碱净出口国。自2003年起,我国纯碱产能和产量位居世界第一,2016年供给侧改革产能增速放缓,2021年达到历史高点。截至2021年,我国纯碱产能为3405万吨,产量为2913万吨。
我国共有41家纯碱生产企业。其中采用联碱法生产的企业共有25家,大部分企业的产能在60-120万吨,主要分布在江苏、河南、湖北、四川和重庆。采用氨碱法生产的企业有12家,大部分企业的产能高于100万吨,主要分布在青海、江苏和山东。采用天然碱法生产的企业有3家,其中2家位于河南,1家位于内蒙古。ADC发泡剂联产法仅有宁夏日盛1家。
我国纯碱行业产能较为集中,其中100万吨以上(包含100万吨)生产厂家有13家,这13家厂家累计产能2120万吨,占比在63.9%;产能在60万-90万吨之间的厂家有12家,累计产能790万吨,占比在23.8%;60万吨以下产能生产厂家16家,累计产能407万吨,占比仅有12.3%。我国纯碱行业现有的大型生产集团主要有唐山三友、中国盐业、金山化工和远兴能源四家,占全国总产能的比例分别为10.3%、11.8%,9.9%和5.1%,合计超过35%。
从新增产能角度上看,2022年计划投放的产能大概在140万吨,但江苏德邦以及金山化工的共100万吨的产能投放在12月,实际产出量预计在2023年一季度,也就是2022年新增投产有限,另外内蒙古博源银根化工(远兴能源收购)的天然碱投放预计在2023年产出,因此2022年预计纯碱的新增投产压力不大。
开工与检修
从季节性角度上看,纯碱同其他化工品类似,每年的11月到来年的1月属于开工率较高的时间,这阶段纯碱的月度产量将是年内最高时期。由于纯碱生产属于放热反应,检修一般安排在夏季或是下游停工较多、需求不旺的春节期间。氨碱法大修通常耗时7-10天,每隔1-2年进行一次大规模停修。联碱法大修后重启需要依次重启两套循环设备(氯化铵及纯碱),通常耗时10-20天,相比氨碱法,联碱法检修耗时更长,联碱企业每年会进行一次大规模的停修。天然碱法生产工艺简单,每年检修一次,耗时10天左右。从库存角度上看,如其他化工品类似,春节前累库,节后3月左右开始去库,2020年由于疫情影响,使得去库的时间延后。2022年纯碱在3月左右预计同样开始去库。
四、纯碱需求
纯碱是重要的基础化工原料,广泛用于建材、化工、冶金、纺织、食品、国防、医药等领域。在建材领域,纯碱作为平板玻璃的主要原料之一;在化工领域,纯碱广泛用于制造硅酸钠(泡花碱、水玻璃)、碳酸氢钠(小苏打)、氟化钠、重铬酸盐等产品;在冶金领域,纯碱作为冶炼助溶剂、选矿浮选剂以及炼钢的脱硫剂等;在纺织领域,纯碱充当纺织物生产过程中的软水剂;在食品加工领域,纯碱可作为面食添加剂起到中和剂、膨松剂、缓冲剂、面团改良剂作用,也可作为辅助添加剂应用于味精、酱油的生产。此外,纯碱也广泛应用于环保脱硫、医药制品、制革、造纸等,高端纯碱还可用于显像管玻壳和光学玻璃制造。
在中国纯碱应用领域,食用纯碱占4%,惯犯应用于食品行业,属于;工业用碱占96%,作为生产过程中的原材料或辅助剂。在工业生产中,纯碱广泛应用于平板玻璃、无机盐、日用玻璃、洗涤剂和印染等行业。纯碱下游行业在轻、重碱使用方面有明确的要求,很少出现轻、重碱混用的现象。纯碱的下游行业中,平板玻璃行业是重碱最主要的消费者,日用玻璃、无机盐、洗涤等行业则主要消费轻碱,日用玻璃领域主要使用重碱,少部分企业采用一定量重碱。
平板玻璃
平板玻璃主要采用的重碱,按照生产成本来计算,一吨玻璃平均需要0.2吨的重碱。2015年以来,平板玻璃对纯碱的年需求量始终保持在1000万吨以上。近几年浮法玻璃产能呈小幅增长态势,2016年受房地产市场回暖提振,供需环境好转,行业利润上升明显,2017-2018年浮法玻璃产能增速保持高位。环保因素造成2019年沙河部分产线停产,浮法玻璃产能增速降至低位。。2020年平板玻璃行业消费重碱1162万吨,同比增长2.6%。2021年平板玻璃产业整体利润尚可,开工属于近几年高位,产量超过10亿重量箱。
日用玻璃
日用玻璃包括瓶罐玻璃、器皿玻璃、艺术玻璃、仪器玻璃、医药用玻璃、保温瓶玻璃、电光源与照明玻璃等。近年来,我国日用玻璃对轻碱的需求量稳中有升。除2015年因环保因素导致日用玻璃企业产量下降,引发纯碱需求下滑外,其余年份行业对纯碱需求量均有所增长。
目前,我国日用玻璃行业正经历由高速增长阶段向高质量发展阶段的转变。与发达国家相比,日用玻璃在我国居民日常生活中的应用场景仍偏少,我国日用玻璃平均价格仍偏低。随着居民消费水平的提升和消费结构的升级,未来,日用玻璃行业仍呈现长期向好的发展势头。从市场格局来看,由于我国日用玻璃行业具有准入壁垒、技术壁垒、市场壁垒、资金壁垒及品牌壁垒等,虽然我国日用玻璃行业从业企业数量众多,但以中小规模企业为主,其产品多以低档系列为主,且客户来源缺乏稳定性,很大程度依靠低廉的价格占据市场空间,使得行业集中度偏低。
光伏玻璃
2016-2020年中国光伏玻璃产能逐年增长,2020年光伏玻璃产能增速明显。据统计,当前全国光伏玻璃在产生产线共计231条,2021年4季度以来暂无新产能投放,点火延期较多。2021年3月后光伏玻璃价格出现大幅下行,叠加“双碳”背景下地方政府能耗指标或有收紧趋向,当前不能排除后续产线延期投产可能,2022年产能投放进度需持续观察。总体看,考虑到今明两年光伏玻璃拟投产新产能量较大,后期投产的增速或有下滑。
其他需求
全国氧化铝产量在2019年下降后再次恢复增长,2021年达近年来最高值。2021年全国氧化铝产量为7747.5万吨,同比增长5%。国内氧化铝产量前十省市分别为山东省、山西省、河南省、广西区、贵州省、重庆市、云南省、内蒙古、四川省、江西省。氧化铝生产工艺中“烧结法”选用轻碱作原料,“拜耳法”选用烧碱作原料。目前国内氧化铝行业主要采取拜耳法生产,仅山西、重庆部分装置维持两种方法共存。近年氧化铝轻碱需求保持增长势头,主要原因是烧碱价格涨幅较大,为降低成本,部分装置由拜耳法改为烧结法。但考虑到烧结法制取工艺难以发展壮大,氧化铝对于纯碱的需求增长空间较有限。
合成洗涤剂形态有粉剂、液体、固体或膏体等,是由表面活性剂和各种助剂、辅助剂配制而成的一种洗涤用品。数据显示,2021年我国合成洗涤剂产量达1037.7万吨,同比减少6.4%。近年来,我国洗涤剂行业发展迅速,应用范围涉及日化、洗涤、农药、纺织、石油等多个领域,并持续扩展到更多新技术领域内,未来洗涤剂行业对纯碱的需求量仍将保持在较为稳定的水平。
硅酸钠用途非常广泛,遍及国民经济各个部门。工业硅酸钠分为二类:液体硅酸钠主要用于制造黏结剂、填充料、化工原料、防腐剂和助剂等;固体硅酸钠则主要用途是制造液体硅酸钠。业内将液体硅酸钠称为水玻璃,将固体硅酸钠称为泡花碱。土木工程中一般使用钠水玻璃。
五、纯碱的进出口以及贸易格局
纯碱的进出口
我国是纯碱净出口国。2010年以来,我国纯碱年平均净出口量为152.4万吨,其中,年平均出口量为165.2万吨,年平均进口量只有12.8万吨。我国纯碱主要出口到韩国、印度尼西亚、尼日利亚、越南、菲律宾、孟加拉国、泰国、马来西亚等国家。纯碱出口港主要以南京港、青岛港、天津港、济南港为主,这4个港口出口量占95%以上。我国纯碱主要进口国有美国、土耳其,进口量波动主要受国内外纯碱价差影响。出口贸易量占全球纯碱贸易量的12%左右,出口仅作为阶段性调节国内市场供需平衡的手段。
国内贸易格局
中国纯碱行业销售模式分别是直销、代销和经销。直销是纯碱销售最常采用的方式,纯碱厂家直接与下游进行交易,多要求直销客户“押款”,这样保证了纯碱销售与采购的稳定性,同时降低了沟通成本。代销是指纯碱厂家将自己一定比例的货源交由贸易商,代销贸易商不做库存,不承担价格波动风险。经销是指国内经营多个化工品种的化工贸易企业同时经销多个品牌的纯碱,批发拿货,根据市场行情进行库存管理,自负盈亏。目前轻碱多以代销或经销方式为主,直销为辅;重碱因需求量大且集中,多采用直销方式。
国内纯碱的主产区和主销区并不一致。国内主要净调出省市5个,分别为青海、江苏、河南、山东、重庆,调出纯碱总量1300万吨左右;净调入省市19个,排名前五的是广东、安徽、福建、浙江、湖南,调入纯碱总量600万吨左右。青海、河南的纯碱调出地位明显;而受行业产能新增限制的影响,广东、福建、广西和东北仍将是国内纯碱的主要输入地。
为什么说“中国科学家邹承鲁最早合成胰岛素,但是由于中国大陆的政治体制,没能获得诺贝尔奖”
水是人类的生存与发展,社会的文明与进步的基本保障。饮用水更是与我们每个人的日常生活息息相关。由于近几十年工业化的迅速发展,城市化规模的不断扩大,人们在生活和生产过程中排放出来的污染物对源水水质的污染已经愈演愈剧,源水受污染的程度越来越严重,水中有机物质逐渐增多。从20世纪60年代以来,不少地区饮用水水源水质日益恶化;同时,随着水质分析技术逐渐改进,水源和饮用水中能够测得的微量污染物质的种类也不断增加,人们在饮用水的水质净化中又碰到了新问题。针对源水中出现的新污染问题,进入20世纪70年代以后,人们就开始着手对水质净化的新技术进行了研究,并且已经有很多技术在实际生产中应用,取得了较好的效果。
1 物理技术
1.1 吹脱
吹脱是利用水中溶解化合物的实际浓度与平衡浓度之间的差异,将挥发性组分不断由液相扩散到气相中,达到去除挥发性有机物的目的。吹脱法具有费用低、操作简单的优点,但对难挥发的有机物去除效果差。对于含有可挥发性化合物的污染原水,用填料塔进行曝气吹脱是一种行之有效的方法。早期的空气吹脱只限于去除水中H2S等产生嗅和味的挥发性化合物及CO2。从70年代末起,空气吹脱已开始用于去除挥发性有机污染物,并得到广泛的研究和应用。能挥发去除的有机物有:苯、氯苯、二氯甲烷、四氯甲烷、二氯苯、三氯乙烯、四氯乙烯、三氯甲烷等。在114种应优先去除的污染物中,可用吹脱去除的有31种。去除效果与接触时间、气液比、温度、蒸汽压有关。当气液比为1:1时,三卤甲烷去除率达10%以上,当气液比为20:1时,可高达85%,并可显著改善色、嗅、味[1]。
1.2 吸附
吸附处理技术是指利用物质强大的吸附性能来去除水中污染物的技术。目前用于水源水处理的吸附剂有活性炭(AC)、硅藻土、二氧化硅、活性氧化铝、沸石、离子交换树脂,其中用得最多的是对水中有机污染物和臭味有较强吸附作用的疏水性物质—活性炭。
活性炭(AC)具有丰富微孔结构和表面憎水性,其对水中某些污染物有极强的亲和力,是有效的去除方法。美国大多数水处理工作者认为,活性炭吸附是从水中去除多种有机物的“最佳实用技术”,可作为其它深度处理技术的一个参照标准。活性炭可经济有效的去除嗅、味、色度、氯化有机物、农药、放射性污染物及其它人工合成有机物。活性炭应用可以单独采用,亦可以与其它方法组合使用而取得更佳效果。如活性炭与预氧化同时使用,可减少氯化有机物的生成量,此外还有生物活性炭等方法。水处理中颗粒活性炭(GAC)使用较多,并已发展为球形活性炭、浸透型活性炭、高分子涂层活性炭等多种类型。用活性炭做吸附剂去除水中污染物,虽能取得良好的效果,但其价格较贵,再生困难,对大部分极性短链含氧有机物,如甲醇、乙醇、甲醛、丙酮、甲酸等不能去除[2]。人们开始研制高效、价廉的粘土吸附材料作为水处理吸附剂。粘土的比表面积大,低温再生能力强,储量丰富,但大量粘土投入混凝剂中也增加了沉淀池的排泥量,给生产运行带来了一定困难。目前这类吸附剂大多数仍处于研究阶段,重点在于对其吸附性能和加工条件、表面改性等方面的探讨,以期提高吸附容量和吸附速率。
合成树脂吸附,如聚苯乙烯—二乙烯基苯聚合物,但因其再生或洗脱困难,比表面积小,费用较高而使其应用受到一定限制。此方法虽然运行成本高,灵活性不如活性炭,但由于是人工合成产品,其微孔尺寸可按需要改变。另外,其水中污染物吸附可逆性好,可用NaCl—NaOH再生,比活性炭再生方便。而且随着高分子工业的发展,其开发潜力很大。
无机吸附剂中研究较多的是活性氧化铝吸附。氧化铝是一种两性物质,等电点约为pH9.5,当水中pH小于9.5时吸附阴离子,大于9.5时吸附阳离子。因此,可以因吸附目的不同,而对氧化铝进行改进,如酸改性、碱改性,从而获得最佳吸附容量。另外,因Ca、Mg的活性比Al强,还可以进行酸(碱)的钙、镁修饰,可与腐殖酸形成共价键的有机金属络合物,去除腐殖酸达60—75%[1]。
1.3 膜过滤技术
膜分离法是新兴的高分离、浓缩、提纯、净化技术,是用天然或人工合成高分子薄膜做介质,以外界能量或化学位差为推动力,对双组分或多组分溶液进行过滤分离、分级提纯和富集的物理处理方法。膜法在美国被EPA推荐为最佳工艺之一,日本则把膜技术作为21世纪的基盘技术,并实施国家攻关项目“21世纪水处理膜研究(MAC21)”,专门开发膜净水系统[3]。目前常见的膜法有:微滤、超滤、纳滤、反渗透、电渗析、渗透蒸发、液膜及刚出现的毫微滤技术等。从膜滤法的功能上看,反渗透能有效的去除水中的农药、表面活性剂、消毒副产物、THMs、腐殖酸和色度等。纳滤膜用于分子量在300—1000范围内的有机物质的去除。而超滤和微滤膜可去除腐殖酸等大分子量(大于1000)的有机物。因此,膜滤技术是解决目前饮用水水质不佳的有效途径[4]。膜法能去除水中胶体、微粒、细菌和腐殖酸等大分子有机物,但对低分子量含氧有机物如丙酮、酚类、酸、丙酸几乎无效。把膜工艺进一步应用到给水处理中的障碍是:基建投资和运转费用高,易发生堵塞,需要高水平的预处理和定期的化学清洗,还存在浓缩物处置的问题。然而,随着清洗方式的改进,膜堵塞和膜污染问题的改善以及各种膜价格的降低,相信在不久的将来,膜法一定会在给排水领域造成重大影响。
2 化学技术
2.1 预氧化技术
预氧化技术是指向原水中加入强氧化剂,利用强氧化剂的氧化能力,去除水中的有机污染物,提高混凝沉淀效果。常用的氧化剂有氯气、臭氧和高锰酸钾等[5]。
臭氧氧化法是在水处理中受到普遍关注的氯消毒副产物对人体具有致命危害之后开始重视并广泛采用的方法。臭氧(O3)是应用最广泛的新型氧化剂。O3可提高水中有机物的生化性,有助于提高絮凝效果,减少混凝剂的投加量,但有资料表明:(1)含有有机物的水经O3处理后,有可能将大分子有机物分解成小分子有机物,在这些中间产物中,也可能存在致突变物。(2)在O3投量有限的情况下,不可能去除水中氨氮,因为当水中有机氮含量高时,O3把有机氮氧化成氨氮,致使水中氨氮含量反而增高。(3)O3对水中一些常见优先污染物如三氯甲烷、四氯化碳、多氯联苯等物质的氧化性差,易生成甘油、络合状态的铁氰化合物、乙酸等,从而导致不完全氧化产物的积累。
高锰酸钾预氧化可控制氯酚、THMS的生成,并有一定的色、嗅、味去除效果,对烯烃、醛、酮类化合物也有较好的去除能力。但经高锰酸钾氧化后的产物中,有些是碱基置换突变物前驱物,它们不易被后续工艺去除,当Cl2投量高时,前驱物转化为致突变物,增加出水的致突变活性。
二氧化氯(ClO2)可有效破坏藻类、酚,改善水的色、嗅、味。二氧化氯是氧化剂,不是氯化剂,不会像Cl2那样与水体中的有机物发生卤代反应而生成对人体有害的、致癌的有机卤代物。有研究认为,甚至ClO2本身的氧化作用也能去除THMS的前体物。但是,往往由于氧化不彻底,一些小分子有机物更易生成三卤甲烷。
2.2 光化学氧化法
光化学氧化法是在化学氧化和光辐射的共同作用下,使氧化反应在速率和氧化能力上比单独的化学氧化、辐射有明显提高的一种水处理技术。光氧化法均以紫外光为辐射源,同时水中需预先投入一定量氧化剂如过氧化氢,臭氧或一些催化剂,如染料、腐殖质等。它对难降解而具有毒性的小分子有机物去除效果极佳,光氧化反应使水中产生许多活性极高的自由基,这些自由基很容易破坏有机物结构。属于光化学氧化法的如光敏化氧化,光激发氧化,光催化氧化等[6]。
光激发氧化法是以臭氧、过氧化氢、氧和空气等作为氧化剂,将氧化剂的氧化作用和光化学辐射相结合,可产生氧化能力很强的自由基。紫外—臭氧联用技术可以氧化臭氧所不能氧化的微污染水中的有机物,如三氯甲烷、六氯苯、四氯化碳、苯,使之变成CO2和H2O,降低水中的致突变物活性,其氧化效果比单独使用UV和O3要好。但是,紫外—臭氧工艺对有机物或THMs的去除能力还有待进一步探讨,而且该工艺费用较高,还不容易推广应用。
光催化氧化法是在水中加入一定数量的半导体催化剂,它在紫外线辐射下也能产生强氧化能力的自由基,能氧化水中的有机物,常用的催化剂有TiO2。该方法的强氧化性、对作用对象的无选择性与最终可使有机物完全矿化的特点,使光催化氧化在饮用水深度处理方面具有较好的应用前景。但是TiO2粉末颗粒细微,不便加以回收,同传统净水工艺相比,光催化氧化处理费用较高,设备复杂,近期内推广使用受到限制。光催化氧化投入实际应用所需要解决的主要问题是确定长期运行过程中催化剂中毒情况及寻求理想的再生方法;解决催化剂的分离回收或固定化问题;反应器的设计及提高光能利用率等。可以预见,随着研究的不断深入,光催化氧化必将越来越得到重视[7]。
光敏化降解主要的研究对象是水环境中的石油污染物直链烷烃。敏化剂能够从直链烷烃的碳原子上夺取氢原子后生成羟基,在氧的作用下使其降解为酮、烯、醛、醇等。这些化合物均比烷烃更加容易被水环境中的微生物所降解。光敏化降解常用的敏化剂是蒽醌[8]。
光化学氧化法目前尚处于研制阶段,由于运行成本较大,尚难大规模的在生产中应用,但该项技术发展很快,在生产上的应用将为期不远。
3 生物预处理技术
水源水生物处理技术的本质是水体天然净化的人工化,通过微生物的降解,去除水源水中包括腐殖酸在内的可生物降解的有机物及可能在加氯后致突变物质的前驱物和NH3—N,NO2—等污染物,再通过改进的传统工艺的处理,使水源水水质大幅度提高。常用方法有生物滤池、生物转盘、生物流化床,生物接触氧化池和生物活性炭滤池。这些处理技术可有效去除有机碳及消毒副产物的前体物,并可大幅度的降低NH3—N,对铁、锰、酚、浊度、色、嗅、味均有较好的去除效果,费用较低,可完全代替预氯化[9-16]。
3.1 塔式生物滤池
轻质滤料的开发与采用,为塔式生物滤池的应用创造了条件。生物塔滤增加了滤池高度,分层放置填料,通风良好克服了普通生物滤池(非曝气)溶解氧不足的缺陷。国外广泛采用塑料材质大孔径波纹孔板滤料,我国常采用环氧树脂固化玻璃钢蜂窝填料。塔式生物滤池的净化作用也是通过填料表面的生物膜的新陈代谢活动来实现的。塔式滤池的优点是负荷高、产水量大、占地面积小,对冲击负荷水量和水质的突变适应性较强。缺点是动力消耗较大,基建投资高,运行管理不便。
3.2 生物转盘反应器
生物转盘在污水处理中已广泛采用,目前在给水处理领域,对某些污染程度较为严重的微污染水进行了一些研究。日本、我国台湾地区以及国内学者的试验研究表明,采用生物转盘预处理在适宜水力负荷下改善微污染水水质是有效的。
生物转盘的特点表现为,生物膜能够周期的运行于空气与水相两者之中,微生物能直接从大气中吸收需要的氧气(减少了溶液中氧传质的困难性),使生物过程更为有利的进行。转盘上生物膜生长面积大,生物量丰富,不存在类似于生物滤池的堵塞情况,有较好的耐冲击负荷的能力,脱落膜易于清理处置。但存在的不足是生物氧化接触时间较长,构筑物占地面积大,盘片价格较贵,基建投资高。
3.3 生物膨胀床与流化床
生物膨胀床是介于固定床和流化床之间的一种过渡状态,流化床中的填料随水、气流的上升流速的增加而逐渐由固定床经膨胀床最后成为流化床。生物膨胀床与流化床通过选用适度规格粒径(约为0.2~1.0mm)的生物载体,如砂、焦碳、活性炭、陶粒等,采用气、水同向混合自下而上,使载体保持适度膨胀或流化的运转状态。与固定床相比,从两个方面强化了生物处理过程:一方面,载体粒径变小,比表面积增大,单位溶剂的比表面积可达到2000~3000m2/m3,这大大提高了单位生物池的生物量。另一方面,由于颗粒在反应器中处于自由运动(膨胀或流化)状态,避免了生物滤池的堵塞现象,提高了水与生物颗粒的接触机会;同时可采用控制膨胀率的办法来控制水流紊动对生物颗粒表面的剪力水平,进而控制填料上生物膜的厚度,有利于形成均匀、致密、厚度较薄且活性较高的生物膜。这些都大大的强化了水中可生物降解基质向生物膜内的传递过程,使生物膨胀床、流化床的单位容积的基质降解速率得到提高。生物膨胀床、流化床含有活性高的较大生物量,处理水力负荷增大,并保证出水水质良好。
采用生物膨胀床与流化床,可解决固定填料床中常出现的堵塞问题,进一步提高净化效率,且占地面积少。但由于保持膨胀或流化状态,消耗的动力费用较高,且维护管理复杂,尤其是当池体比较大的情况,如一旦停止运行,再启动很困难,运行中水力学条件难以控制等。在运行过程中还存在流化介质跑料现象,其工程应用还很少见。
3.4 生物接触氧化法
生物接触氧化工艺是利用填料作为生物载体,微生物在曝气充氧的条件下生长繁殖,富集在填料表面上形成生物膜,其生物膜上的生物相丰富,有细菌、真菌、丝状菌、原生动物、后生动物等组成比较稳定的生态系统,溶解性的有机污染物与生物膜接触过程中被吸附、分解和氧化,氨氮被氧化或转化成高价形态的硝态氮。反应过程如下:
有机污染物氧化反应
4CxHyOz+(4x+y-2z)O2——4xCO2+2yH2O+Q (1)
氨氮氧化方程式:
2NH4++3O2——2NO2—+4H++2H2O+Q (2)
2NO2—+ O2——2NO3—+Q (3)
生物接触氧化法的主要优点是处理能力大,对冲击负荷有较强的适应性,污泥生成量少;缺点是填料间水流缓慢,水力冲刷小,如果不另外采取工程措施,生物膜只能自行脱落,更新速度慢,膜活性受到影响,某些填料,如蜂窝管式填料还易引起堵塞,布水布气不易达到均匀。另外填料价格较贵,加上填料的支撑结构,投资费用较高。
现有生物接触氧化法在曝气充氧方式、生物填料上都有所改进。国内填料已从最初的蜂窝管式填料,经软性填料、半软性填料,发展到近几年的YDT弹性立体填料;曝气充氧方式也从最初的单一穿孔管式,发展到现在的微孔曝气头直接充氧以及穿孔管中心导流筒曝气循环式。在一定程度上,促进了膜的更新,改善了传质效果。
3.5 膜生物反应器
膜生物反应器是指以超滤膜组件作为取代二沉池的泥水分离单元设备,并与生物反应器组合构成的一种新型生物处理装置,英文称之为Membrane Bioreactor。由于超滤膜能够很好的截留来自生物反应器混合液中的微生物絮体、分子量较大的有机物及其他固体悬浮物质,并使之重新返回生化反应器中,这就使反应器内的活性污泥浓度得以大大提高,从而能够有效的提高有机物的去除率。
3.6 电生物反应器
将电极装置与生物反应器组合起来就构成了所谓电生物反应器(英文名称为Electro-Bioreactor)。Mellor等的研究表明,在外加电流的条件下,由于电子的产生,生物膜和固定化酶的反硝化作用得以强化,其反应方程为:
2H++2e—H2 (1)
2H2O+2e—H2+2OH— (2)
2NO3—+5H2+2H+—N2+6H2O (3)
显然,通过对水的电解,阴极提供电子,产生氢,而氢作为电子供体与硝酸盐发生了方程(3)所示的反应,使生化反应速率及去除率得以提高,从而减少了水中硝酸盐的含量。从原理上讲,这种方法除了可以实现反硝化处理外,还可以去除水体中的有机物,但目前对电生物反应器尚处于基础理论和动力学研究阶段,离实际应用还有相当一段距离。
4 结论
总的来说,物理、化学法处理效率较高。尤其是各种联用技术的开发,对一些难降解有机物的去除非常有效,通过高效氧化,去除水中的大部分有机物,并有效的降低了饮用水致突变活性。但这些方法设备都相对复杂,运行和操作条件要求较高,尤其是成本问题严重制约了它们的推广使用。
相比之下,生物预处理是一种经济有效且在毒理学上安全的方法,它通过降解BOM来降低甚至消除了输水管网中菌群生长的可能性,从而减少了消毒剂的消耗,并进而降低THMs的形成;通过降低Zeta电位减少对混凝剂的消耗;其对NH3—N和其它有机污染物有良好的处理效果,尤其在与传统工艺(混凝—沉淀—过滤—消毒)联用后,对降低饮用水致突变活性效果也很好。而且,该方法投资少,见效快,适合我国国情,因此,生物预处理与传统工艺的组合是目前国内水厂改善出水水质的首选方法。但是,一些研究表明,生物预处理对微量难生物降解的优先污染物(指经过优先选择的污染物,其特点是:难以降解、在环境中有一定残留水平、出现频率较高、具有生物积累性、三致性、毒性较大或潜在危害性较大以及现代已有检出方法的物质)无效;对THMS只有少量去除效果;Ames试验不能由阳变阴;运行效果受到许多因素的影响,特别是原水水质、水温、水量的变化和操作管理水平的高低都直接影响处理效果;与常规工艺相比,需较长的成熟期,并进行生物驯化;由于生物处理是借助于微生物新陈代谢去吸收利用水中的污染物,因此会有各种代谢产物以及微生物本身进入水中,其中大多数物质的特性及对人体健康的可能影响还所知甚少。研究新的净水工艺,增加新的治理措施是当今给水研究人员及自来水厂急需解决的课题。从目前的研究方向和大量的研究结果来看,在自来水厂增加生物预处理和加强出水的深度处理是改善饮用水水质的有效途径。
参考文献
[1] 钱庆玲,范瑾初,吴国权.微污染源水净化技术综述.公用科技,1995,11(3):30-34
[2] 余子锐,沈明,邹惠仙.活性炭纤维去除水中微污染物的研究.重庆环境科学,2003,25(5):24-30
[3] 贾瑞宝,文闵英.应用水源微污染现状及其深度处理技术.山东环境,1999,(5):42-43
[4] 莫罹,黄霞.微滤膜处理微污染源水研究.中国给水排水,2002,18(4):40-43
[5] 于鑫,李旭东.饮用水源水微污染及其处理技术.四川环境,1998,17(1):24-30
[6] 罗建中,孙国胜.微污染水处理技术进展.过滤与分离,2002,12(3):4-9
[7] 王海涛,朱琨,魏翔,Linus Zhang.光化学氧化降解水中有机微污染物试验研究.兰州铁道学院学报,2003,22(4):116-119
[8] 徐中其,戴航,陆晓华.难降解有机废水处理新技术.江苏环境科技,2000,13(1):32-35
[9] 张云霞,邢国平.生物活性炭滤池预处理微污染水源的研究.天津城市建设学院学报,2003,9(1):23-27
[10] 张燕,王志奇,陈英旭.微污染水源水的控制技术.环境污染与防治,2001,23(2):69-71
[11] 李德生,张金萍.微污染水源水中污染物质的控制和净化技术.甘肃环境研究与监测,2000,13(3):165-168
[12] 王沛芳,陈鸣钊,王超.新型生物反应器对微污染水预处理的试验研究.河海大学学报,2003,31(3):246-250
[13] 陈伟,范瑾初.微污染源水的生物接触氧化预处理技术综述.公用科技,1997,13(2):28-31
[14] 贺瑞敏,朱亮,谢曙光.微污染水源水处理技术现状及发展.陕西环境,2003,10(1):37-40
[15] 徐斌,夏四清,高廷耀,胡晨燕.悬浮生物填料床处理微污染源水硝化试验研究.环境科学学报,2003,23(6):742-747
[16] 陈莉,范跃华.微污染源水的处理技术发展与探讨.重庆环境科学,2002,24(6):67-69
制动液有什么要求
今年是中国科学家人工合成结晶牛胰岛素44周年。1965年9月17日,中国科学院生物化学研究所等单位经过6年多的艰苦工作,第一次用人工方法合成了一种具有生物活力的蛋白质———结晶牛胰岛素,作为中国人的骄傲,许多人认为,这是中国科学家与诺贝尔奖距离最近的一次。它和“两弹一星”研究一样,也是中国人在科学领域的面子———不但证明了
中国人是聪明的,增强了中华民族的自信心,还证明了中国在科研领域可以和西方发达国家相竞争,甚至在一穷二白的基础上做出世界一流的成果。
40年来,围绕这项工作,已经出现过数以千计的各种形式的报道。但是,在这个为期六七年的研究中,还有一些鲜为人知的故事,其中,被探究得最少的可能是1960年前后的“大兵团作战”。
以科学家为中心
人工合成胰岛素课题于1958年12月底正式启动。由于工作非常艰难、工作量非常大,而自己既缺乏有机合成经验,人手又不够,所以刚一开始,课题的首倡者中国科学院生物化学研究所就先后请求与中国科学院有机化学研究所、北京大学化学系有机教研室合作。有机所不肯加入,而北京大学很快就同意了。经过几轮磋商,1959年3月,生化所和北大化学系签定了合作协议。刚刚于1958年由生化所协助建立的复旦大学生物系生化教研室也想参加胰岛素合成工作。生化所不太愿意,只同意让它参与做一点天然胰岛素的制备工作,没把它列为正式的协作单位。
北京大学的相关工作由有机教研室主任邢其毅教授、研究组组长张滂教授领导。他们和陆德培等4位青年教师、季爱雪等4位研究生一道,带领有机专业的十多名应届毕业生以毕业论文的方式开展合成研究。而生化所则建立了由邹承鲁、钮经义、曹天钦、沈昭文等人分别负责的5个研究小组,他们各带了一批年轻的科研人员,分头探路———因探路成功而一直延续下来了的只有由邹承鲁负责的天然胰岛素拆、合小组和由钮经义负责的胰岛素肽链有机合成小组。
经过一年的探索,到1959年底时,他们虽然未能像早期计划的那样完成胰岛素工作,但也已获得拆、合天然胰岛素等几项重要的成果。这不但基本解决了合成工作大的路径问题,还给一些领导干部造成了该研究只剩了“堆肽”技术活的印象。
北京大学开展群众运动
就在这时,“倾”运动迎面扑了过来。就像“”运动导致了胰岛素人工合成课题的提出一样,1959年的“倾”运动也影响了胰岛素工作的研究方式。作为直接的导火索,它给胰岛素工作带来了一种富有时代特点的科研方式———“大兵团作战”。
很多年以来,北京大学一直处于时代的漩涡中心,这一次,又率先响应了上级的号召,最早开展了轰轰烈烈的群众运动。1959年底,在新调来的系党总支书记的领导下,化学系的学生对自己的老师展开了猛烈的批判,批判他们信心不足、固步自封、按部就班、有名利思想、走白专道路、奉行“爬行主义”、小团体主义和本位主义,在科学研究方面搞神秘论,把科研工作进行得“沉沉闷闷”、“冷冷清清”,等等。
批判结果之一是胰岛素合成工作的领导班子被彻底改组:原来的***中,张滂被开除出胰岛素合成队伍,留下来的邢其毅也因为“对合成胰岛素不积极”而不再对这项工作具备发言权。改由1958年才毕业留校的一位青年教师负责业务工作;1960年4月时,又有十多位同学提前3个月毕业,作为“会战组”党支部委员加入了领导班子;新来的系党总支书记直接领导他们。在这些缺乏科研经验的新班子的指挥下,北大化学系及少量生物系“革命师生”共约300人“参加了这场科研大战”,一大批“连氨基酸符号还不认识”的青年教员和三、四、五年级学生成了胰岛素研究的“尖兵”,成了“科研的主力军”。他们“从无到有,从不会到会”,“不懂就学,遇到困难就学毛主席著作”。
在这些人看来,合成多肽是一件非常简单的事:“把两段多肽倒到一起,就叫合成了一个新的多肽———也没问是否发生了反应,具体产物是什么东西。”邢其毅等“老”科学家和原来那些比较“右”的青年教师当然不太认同那些做法,但他们不敢说,只能根据组长、小组长等人的指示执行属于自己的工作。于是,北京大学的进展奇快,“仅用两个星期就完成了4、7、5、5四个肽段”;再花两个星期,到1960年2月17日,就“用两种方法同时合成了胰岛素A链上的12肽”;随后,于“4月22日合成了A链”。
受北大化学系群众运动的激发,1960年1月下旬,“在整风倾的基础上”,生化所也开始大量抽调工作人员支援原有的两个研究小组。经过几次“苦战十昼夜”,他们也在4月20日前“合成了B链30肽”。
复旦大学加入竞争
正当北大化学系和生化所的科研“竞赛”进行得如火如荼的时候,复旦大学生物系横空杀了进来。1960年1月30日,在上海市委、上海市科委和复旦大学党委的支持下,复旦大学生物系某党支部委员组织了六七十位师生(其中2/3是一至三年级的学生),开始另起炉灶,单独筹划胰岛素人工合成工作。3月25日,“为了迎接市工业会议的召开”,他们“进一步大搞群众运动”,组织了120名师生——包括复旦大学生物系生化专业四个年级所有的大约80名学生——“边干边学”,热火朝天、不分昼夜地进行胰岛素合成。其方法和北京大学化学系的学生所做的类似,都不对中间产物作分离和鉴定,只是拼命往后赶。当时的生物系生化教研室主任沈仁权副教授比较内行,但她被搁到了一边,对这项工作没有发言权。于是,复旦大学所报出来的进度也非常快,“在4月22日完成了B链30肽”。
1960年4月19-26日,以稳定基础研究工作为重要主题的中国科学院第三次学部会议在上海举行。在这个会议上,由中科院生化所、北京大学化学系、复旦大学生物系三个单位所主演的胰岛素合成戏剧达到了高潮:它们先后向学部大会献了礼,分别宣布自己初步合成了人工胰岛素B链、A链以及B、A二链!北大的代表还乘飞机把自己合成的A链带了过来。听到这些振奋人心的消息,聂荣臻、郭沫若等领导兴奋异常,他们不但发表了热情洋溢的讲话,还于当天晚上在中苏友好大厦为全体相关人员举行了盛大的庆功宴,只留了拆、合小组的杜雨苍和张友尚在实验室里进行人工胰岛素A链和人工胰岛素B链的全合成工作。聂荣臻和大家一道都在那儿等着,要求他们一出成果,马上敲锣打鼓过去报喜。新华社也已经写好了报道稿———标题为“揭开生命现象的神秘面纱我国对人工合成蛋白质已建功勋”。一切都只等他们的好消息。但直到宴会结束,垂涎欲滴的他们也没有离开实验室。
4天之后,拆、合小组仍没能合成人工胰岛素。这时,复旦大学又爆出喜讯:他们首次得到了具有生物活性的人工胰岛素!上海市长随即在人民广场宣布了这件大喜事。消息刺激了北京市委,他们给北大发指示,说:咱们搞北京牌的胰岛素;中国那么大,搞两个胰岛素也不算多;可以互相验证。要求北大也进行B链合成,也单独合成胰岛素。于是,北京大学只好于1960年5月1日“又开辟了第二个战场”,成立了新的B链组,大搞B链的合成。
科学院开展“特大兵团作战”
上海市委和北京市委的竞争也给中国科学院党组带来了很大压力。为了在竞赛中胜过高等教育部,在院党组正、副书记张劲夫、杜润生的亲自督促下,1960年5月4日,中国科学院上海分院党委书记王仲良决定亲自挂帅任总指挥,组织了由有机所党总支书记边伯明任副总指挥,生化所所长王应睐、有机所代所长汪猷、生化所副所长曹天钦任正副参谋长,生化所青年科技工作者李载平任具体指挥,生化所党支部书记王芷涯负责后勤保障工作的指挥部,指挥生物化学所、有机化学所、药物所、细胞生物学所、生理研究所等五个研究所进行“特大兵团作战”。在当晚举行的“第一次司令部会议”上,生化所党支部提出,“要以20天时间完成人工全合成”。王仲良要求抢时间,在“半个月内完成全合成”。最初不肯参加这项工作的汪猷接着表态:“既然分院党委决定,我们立即上马……半个月太长,要在一个星期内完成。”就这样,在有关领导“这是一个重大的政治任务”、“拿不下来就摘牌子”的敦促下,科学院上海分院开始了风风火火的群众运动。
5月5日,相关研究所共派出344人参加这项工作。他们打破了原有的所、室、组的正常建制,组成了一个混合编队,下属多个“战斗组”,统一安排。战斗组组长一律由青年人担任,原来担任组长的研究员改当组员;生化所一个肽组的组长甚至是一位连多肽都未见过、新近从中国科学院山西分院过去的进修生。他们“采取了一日二班制的办法”,建立了工作流水线。虽然有很多人并不愿意放下自己手头原有的研究转到这项工作中来,但既然党的领导干部在亲自指挥这项工作,他们也普遍表现得很积极。很多人“每天除了几小时的睡眠,其他的时间都在试验台旁度过”;“有人甚至把铺盖搬进实验室”,根本不怕有毒的药品,根本不顾及自己的身体健康。还有些工作骨干“甚至两天不睡”,以至于领导下决定“必须……安排骨干分子的休息睡眠”。
可胰岛素人工合成毕竟是基础科学研究,和军事斗争、工农业生产有一定区别。在这里,“一个人卅天的工作等于卅个人一天的工作”并不成立。这么多人忙了7天、15天、20天、一个月,依然没有实现最初的目标。50天后,人工合成的A、B链终于“正式进行会师”,可非常令人遗憾,“总的情况是人A人B(编者注:人工合成胰岛素A链、B链)全合成没有出现活力”。不但如此,在随后的20天内,“合成A链进行三次人A天B(编者注:人工合成胰岛素A链、天然胰岛素B链)测定,结果均无活力”。
王应睐一直心怀整个国家的生化事业,对这种费钱、费力而不讨好的研究方式急在心上,早就想将其停下来。1960年7月底,他终于鼓起勇气向中国科学院党组的领导反映了自己的想法,强调人太多没有好处,专业不对口的在里面起不到什么作用,还是应该减少一点,让队伍精干一点,都是熟悉业务的人,这样进展会更快。张劲夫和杜润生与科学工作者是比较贴心的,发动大兵团作战一段时间后,见效果不明显,就认真考虑了王应睐的建议。
于是,“1960年7月,杜润生同志指示说,大兵团作战,搞长了不行,应精干队伍”。随后,“经过三天大会,总结辩论,生理、实生、药物三个所下马,留下生化、有机两个所”。剩下两所的参与人数也逐渐减少,到年底时,生化所只剩了“精干队伍近20人”,“有机所……只剩下7人”。
在交了上百万元的昂贵学费后,科学院的大兵团作战就这样偃旗息鼓。
1960年,北京大学化学系、生物系参加胰岛素工作的学生没有正常的暑假,直到10月份他们还在继续工作。终于又合成了三批人工合成A链,自己测试有活力,于是把它们送到生化所。但到那儿之后,它们又失活了!10月下旬,生化所决定派杜雨苍和张友尚过去“学习”。果然不出所料,北京大学所用的测试方法是不规范的!谁也不知道他们“合成”的究竟是什么,惟一可以肯定的是那不是胰岛素A链!60万元的巨额经费已经用尽,结果又如此不如人意,而且人员伤病还相当严重———其中,有3个学生被严重烧伤;有60多个学生得了肺结核———工作当然无法进行下去了。连总结都没做,北京大学化学系的大兵团作战就这样鸣金收兵。
复旦大学生物系的情况与北京大学的类似,也是因为经费等问题而于1960年下半年停止。
“大兵团作战”阶段所获得的产物,除有机所还留了一点用于继续提纯和分析,后来还陆续整理出了几篇论文外,其他单位七八百位科技工作者和学生轰轰烈烈、辛辛苦苦忙了好几个月,所收获的恐怕就是失败的教训了。
作为那个时代所独有的科研方式,“大兵团作战”本身是很值得关注的。轻视原本就非常少的专家,由领导干部直接指挥不懂行的群众用搞运动方式做研究,这是中国人在科研方式上的独特创造,也确实实践了当时一些领导所设想的“无产阶级的科学道路”。但遗憾的是,在胰岛素工作中,这条研究道路行不通。
脚踏实地终获成功
“大兵团夹击胰岛素”遇挫之后,国家也已进入调整时期。在“调整、充实、巩固、提高”八字方针的指导下,开始允许科研人员和教师做自己感兴趣的工作。于是,有机所的一些研究人员表示要再次“敲锣打鼓”把这个课题“送还生化所”,而生化所的绝大部分参与者也心灰意懒,希望下马这个课题。北京大学化学系的情况也类似。但聂荣臻、王仲良、张龙翔、汪猷等多级***坚决不同意这样做。在他们的要求和命令下,中科院和北京大学的胰岛素工作分别持续了下来,只是把队伍精干到了总共20多人——北大最少的时候只剩两个人,而中科院方面也只剩了一二十人,他们大部分都为早期的参与者——工作方式也恢复到了以前冷清、缓慢而脚踏实地的状态。
在国家科委的撮合下,1963年底,北京大学化学系和中科院有机所、生化所又开始重新合作———北京大学化学系主要负责合成胰岛素A链前9肽。又经过两年时间,到1965年9月17日,他们取得了人工胰岛素结晶,终于完成了胰岛素的人工合成。换句话说,在研究人员和研究方法都基本恢复到了先前走所谓“资产阶级的科学工作道路”时的状态后,他们成功了。
重庆鬼屋哪个好玩重庆鬼屋推荐
制动液的要求:
(1)应有较高的沸点。现代汽车在行驶中的制动比较频繁,制动鼓(盘)的温度不断升高,如使用沸点较低的制动液,常会在管路中产生气阻而导致制动失灵,因此制动液的蒸发性要低,不易在高温下汽化。
(2)适宜的高温粘度和良好的低温流动性。制动液在各种条件下都能及时传递压力,并同时使传动机构中的运动件得到一定的润滑。
(3)具有抗氧化、抗腐蚀和防锈的性能。制动液长期与金属相接触应不会因氧化而产生胶状物和腐蚀性物质,或因锈蚀而变色,甚至形成坑点。
(4)吸湿性低、溶水性好、沸点下降少。即使有水分进入制动液,要求能形成微粒而和制动液均匀混合,不产生分离和沉淀现象。
(5)对橡胶的适应性好。制动液对橡胶件不应有溶胀作用,否则会使其失去应有的密封作用,因此制动液对橡胶件要有良好的适应性。
制动液的主要性能
1)良好的粘温性能和低温性能 制动过程中,由于摩擦发热可使蹄片温度高达250°C。其热量有一部分传给制动液,使其工作温度达70~90°C,在下长坡等路况行驶需频繁制动时,其工作温度可达成110°C,大型载货汽车的制动液,有时可高达成150°C,而在冬季某些地区的制动液温度又可低至-40°C以下,因此要求制动液有良好的粘温性能和低温流动性能。适宜的高温粘度、较低的凝点和低温粘度。
2)适当的润滑性 为了保持制动缸和橡皮碗能很好地滑动,要求制动液有适当的润滑性,这可通过台架试验根据活塞和缸的摩擦状态最后判断。
3)保证制动安全可靠不产生气阻 在现代高速汽车中,行驶时经常制动而产生大量的摩擦热,使制动系统温度升高,如使用沸点低、易于蒸发的制动液,则在高温时会由于制动液的蒸发,使局部制动系统的管道内充满蒸气,产生气阻,引起制动失灵。因此新型汽车多要求制动液应具有较高的沸点,较低的蒸发性,以避免减少气阻的产生。
4)较好的防腐蚀性 制动液应对制动器各种金属零部件有较好的防腐蚀性。
5)良好的化学安定性 制动液长期在高湿作用下使用,因此要求制动液不产生热分解和重合,而使油品增粘,也不允许生成油泥沉积物。同时要求互溶性好,当与另一种制动液混合时,不能产生分层或沉淀,影响使用。
6)良好的与橡胶的适应性 在制动系统中有许多橡胶密封件与皮碗等,用以保持制动系统完全密闭,因此制动液应具有良好的与橡胶密封的适应性,防止橡胶密封件与皮碗因液油而膨胀、机械强度降低。
2.制动液的分类
汽车制动液一般分为如下3类:醇型、矿油型、合成型。
1)醇型制动液
醇型制动液的基本组成是蓖麻油45%~55%和醇55%~45(百分数指质量分数)进行调配,产品润滑性好,原料易得,低温粘度大,工艺简单,但低温性能差,平衡回流沸点低,易产生气阻,与水互溶性差,使用过程中易氧化变质,不能保证安全行车。
2)矿油型制动液
矿油制动液是以精制的柴油馏分经深度脱腊后的组分做为基础油,加入增粘剂、抗氧化剂、防锈剂、染色剂等调合而成。这类制动液的温度适应范围宽、低温性能好,对金属无腐蚀作用。但不能与水及合成制动液混溶,进入少量水后在高温下水气化而产生气阻,影响制动效果,对天然橡胶有溶胀作用,必须使用耐油橡胶密封件。
3)合成型制动液
合成型制动液是目前使用最多的制动液,可分为3类:醇醚型、酯型和硅型。
(1)醇醚型制动液 由润滑剂、稀释剂和添加剂组成,常用的润滑剂有乙二醇、聚丙二醇、环氧乙烷加成物、环氧丙烷的聚合物等,常用的衡释剂有二甘醇醚、三甘醇醚,四甘醇醚等。常用的添加剂有抗氧剂、抗腐蚀剂、防锈剂、抗磨剂、PH值调整剂等。产品性能较为稳定,成本较低,用量最大。其缺点是平衡回流沸点不大高,及湿性强,低温性能差,而且在湿热气候条件下使用时,制动器部件易锈蚀。
(2)酯型制动液 其基础液为羧酸酯与硼酸酯,加入量(质量分数)大约为总量的20%~50%,常用的衡释剂为聚乙二醇的单烷基醚等,常用的添加剂有抗氧化剂、抗腐蚀剂、PH值调整剂等。性能比前者有很大改善。
(3)硅型制动液 一般为烷撑聚醚硅酸酯如聚烷撑乙二醇硅酸酯等,并加有橡胶抗溶胀剂和其他添加剂。这类制动液性能较好,但价格昂贵。
现在我们用的一般都是合成型的制动液,具体型号在车辆的使用手册上面,在车的制动液加注口上面或傍边也会有明显的标注。一定要按标注的型号购买和使用,不得随意提高或降低标准,因为涉及到和活塞皮碗的性能匹配问题。刹车油的型号就是以DOT3、DOT4、DOT5、DOT6等等分类的。
汽车制动液是液压制动系统和液压式离合器操纵机构传递能量的工作介质,必须具有多种适应现代汽车的性能要求,以保证行驶安全。
(1)应有较高的沸点。现代汽车在行驶中的制动比较频繁,制动鼓(盘)的温度不断升高,如使用沸点较低的制动液,常会在管路中产生气阻而导致制动失灵,因此制动液的蒸发性要低,不易在高温下汽化。
(2)适宜的高温粘度和良好的低温流动性。制动液在各种条件下都能及时传递压力,并同时使传动机构中的运动件得到一定的润滑。
(3)具有抗氧化、抗腐蚀和防锈的性能。制动液长期与金属相接触应不会因氧化而产生胶状物和腐蚀性物质,或因锈蚀而变色,甚至形成坑点。
(4)吸湿性低、溶水性好、沸点下降少。即使有水分进入制动液,要求能形成微粒而和制动液均匀混合,不产生分离和沉淀现象。
(5)对橡胶的适应性好。制动液对橡胶件不应有溶胀作用,否则会使其失去应有的密封作用,因此制动液对橡胶件要有良好的适应性。
当制动防抱死系统(ABS)出现故障时,维修人员往往只注重系统中电控系统、执行元件及有关部件的检修,往往忽略了对系统中制动液的检查和更换。由于ABS的工作速度较快,系统增压、减压、保压工作过程速度很高,使车轮产生10~40次/秒的抱死和滚动转换过程。与普通油压制动过程相比,它制动压力高,制动液温度高,因此对制动液的性能要求更加严格。
1.制动液应具备的性能指标
1.1 沸点要高
ABS使用的制动液,首先应保证在炎热夏季和制动频繁的情况下不降低使用性能和不产生气阻。美国各汽车公司使用的制动液DOT3,最低沸点在205℃以上,而现在使用的DOT4沸点则在260℃以上;日本各汽车公司使用的制动液要求最低也在252℃以上。欧洲的波许公司现在也推荐使用DOT4,要求也在260℃以上。因此ABS使用和更换制动液,应保持其沸点在260℃以上为佳。
1.2腐蚀性要低
因为制动液对橡胶件和金属制品件的腐蚀较大,为保证制动系统制动主缸(总泵)、轮缸(分泵)中的皮碗、油封或垫圈、活塞、制动管路不被腐蚀损坏,应采用腐蚀性较低的制动液。
1.3低温流动性要好
ABS制动性能好坏,制动器反应是否良好是关键。因此,ABS使用的制动液的黏度应该低些,即低温流动性要好,以防止冬季使用被冻结而影响制动器的工作。
1.4 理化稳定性要好
制动液在使用过程中,受到加热、冷却和吸湿性后,应保持其化学性能的稳定,以防变质而影响制动系统的制动效能,所以要求定期更换制动液。
1.5吸湿沸点要高
ABS 工作时,制动液温度易升高,因此应选用吸湿沸点较高的制动液。若选用吸湿沸点低的制动液,制动管路容易发生气阻,造成制动效能不良。
常见ABS所用制动液的规格如表1所列。
2.制动液的选用
因为ABS结构复杂,管路较长,所以应选用DOT3或DOT4的醇基型制动液,注意不要使用DOT5硅酮型制动液。
3.ABS制动液的更换周期
因为制动液具有较强的吸湿性。实验证明,当制动液的吸湿率达到3%时,制动液的理化性能降低,即会恶化和变质(见图1),将使制动总泵、分泵、压力调节器、密封件等受到不同程度损伤,也易产生气阻。所以当制动液吸湿率达到3%时,必须更换制动液,一般换油周期规定如表2所列。
4.ABS中空气的排放
ABS更换油液后,必须进行空气的排放,如果ABS中有空气,会严重干扰制动压力的调节,而使ABS功能丧失。对液压调节器中的空气一般要用专用仪器按照特殊的规程将空气排出,有的需要扫描仪顺序使液压调节器中的电磁阀通电工作以排出空气。
以达科(VI)ABS放气为例:达科(VI)ABS的放气需用ETCH-1或T-100专用设备将液压调节器的电动机定位,以使单项阀顶在开通位置,让空气完全释放,具体步骤如下
a.找到液压调节器上前轮放气螺钉;
b.在前轮放气螺丝上安一泄油管;
c.慢慢地拧松放气螺钉1/2~3/4圈(图2);
d.制动液流出,没有气泡时就可关闭;
e.按a~d的步骤再进行后轮放气螺钉上的排气操作;
f.最后按普通制动系统四轮放气的程序放气,放气顺序是右后轮(RR)→左后轮(LR)→右前轮(RF)→左前轮(LF)。
对于鬼屋,你去过吗?相信大家所在城市都会有着几处鬼屋的,很多人都是不敢去,却又想去的,对于小编是真的不敢,即使是去了也是全程闭眼跟着同伴的后面,只想抓紧出去,今天小编就来给大家推荐重庆这里的鬼屋,大家准备好迎接啊!
富士病院地址:沙坪坝区沙滨路沙磁巷2栋2楼
营业时间:周一至周日11:00-21:00
电话:023-65015701
门票:130元/人
真人、机械、迷宫三者结合,渐进式恐怖等级;国内医院主题知名鬼屋,中日专业设计团队联袂打造,还原废弃医院原貌,结合光声电气营造恐怖实际场景、沉浸式体验效果。
交通指南
1、轻轨
乘坐1号线至磁器口站下车
2、公交
乘坐224路、503路至磁器口站下车
乘坐202路、220路、224路、237路、261路、467路、503路、808路、843路至磁器口
X先生密室·网红剧本杀(大坪时代店)地址:渝中区长江路龙湖时代天街Village广场V2馆(靠近C馆2号门)
营业时间:周一至周日10:00-24:00
电话:023-89031849
门票:周一至周四工作日白天场120元;晚场周末节假日单人150元
交通指南
1、轻轨
乘坐1号线至石油路站下车
2、公交
乘坐873路至医学院站下车
乘坐225路、268路、403路、411路、416路、418路、466路、471路、476路、0493路、818路、836路、839路、873路至马家堡站下车
_藤鬼校(观音桥店)地址:江北区观音桥兴塔路工业服务港2楼(香港城、红鼎国际旁)
营业时间:周一至周日10:00-22:30
电话:023-67876044
门票:120元
长藤鬼校是由日本恐怖医院顾问全程参与,携手中国香港设计师建造的恐怖实景,全力打造体验式线下游戏的恐怖体验馆。
交通指南
1、轻轨
乘坐3号线至观音桥站下车
2、公交
乘坐125路、127路、181路、183路、465路、601路、606路、606路夜班、608路、609路夜班、612路、630路、0800路、0811路、818路、842路、879路、特需公交t112路至建新北路站下车
伊藤润二·颤栗怪谈·鬼屋地址:渝中区重庆时代天街C馆V1栋1-3层(音乐喷泉广场旁)
营业时间:周一至周四10:00-22:00周五至周日10:00-23:00
电话:17815148161
门票:单人票88元;双人票176元
A馆:聚魂道——实景还原《押切怪谈》、《富江》、《傀儡家族》、《三酸甘油酯》、《寒气》系列
B馆:集灵街——实景还原《十字路口美少年》、《无街之城》、《双一》系列。从场景到道具,超现实还原伊藤润二笔下经典作品,走入这些场景,你会碰到特效妆容演员的沉浸表演,以及出乎意料的突发事件......
交通指南
1、轻轨
乘坐1号线至石油路站下车
2、公交
乘坐873路至医学院站下车
乘坐225路、268路、403路、411路、416路、418路、466路、471路、476路、0493路、818路、836路、839路、873路至马家堡站下车
这些相信已经足够吓人了,大家够胆去吗?虽然是假的,但是其设计可是都很逼真的,大家来挑战的时候,可是要注意啊!
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。